设函数,其中b≠0.
(1)当b>时,判断函数
在定义域上的单调性:
(2)求函数的极值点.
在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须彼此独立地在选票上选3名选手, 其中观众甲是1号歌手的歌迷, 他必选1号, 不选2号, 另在3至5号中随机选2名. 观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手.
(Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;
(Ⅱ)
表示3号歌手得到观众甲、乙、丙的票数之和, 求
的分布列和数学期望.
如图, 四棱柱
的底面
是正方形,
为底面中心,
平面
,
.
(Ⅰ) 证明:
平面
;
(Ⅱ) 求平面
与平面
的夹角
的大小.
设
是公比为
的等比数列.
(Ⅰ) 推导
的前
项和公式;
(Ⅱ) 设
, 证明数列
不是等比数列.
已知向量
, 设函数
.
(Ⅰ) 求
的最小正周期.
(Ⅱ) 求
在
上的最大值和最小值.
在平面直角坐标系
中,已知椭圆
的中心在原点
,焦点在
轴上,短轴长为2,离心率为
.
(I)求椭圆
的方程;
(II)
为椭圆
上满足
的面积为
的任意两点,
为线段
的中点,射线
交椭圆
与点
,设,求实数
的值.