已知矩阵,绕原点逆时针旋转
的变换所对应的矩阵为
.
(Ⅰ)求矩阵;
(Ⅱ)若曲线:
在矩阵
对应变换作用下得到曲线
,求曲线
的方程.
(本小题满分13分)如图1,在中,
,
,
,
、
分别为
、
的中点,连接
并延长交
于
,将
沿
折起,使平面
平面
,如图2所示.
(1)求证:平面
;
(2)求平面与平面
所成的锐二面角的余弦值;
(3)在线段上是否存在点
使得
平面
?若存在,请指出点
的位置;若不存在,说明理由.
(本小题满分13分)根据新修订的《环境空气质量标准》指出空气质量指数在,各类人群可正常活动.某市环保局在2014年对该市进行为期一年的空气质量检测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为
,
,
,
,
,由此得到样本的空气质量指数频率分布直方图,如图.
(1)求的值;
(2)根据样本数据,试估计这一年度的空气质量指数的平均值;
(3)用这50个样本数据来估计全年的总体数据,将频率视为概率.如果空气质量指数不超过20,就认定空气质量为“最优等级”.从这一年的监测数据中随机抽取2天的数值,其中达到“最优等级”的天数为,求
的分布列和数学期望.
(本小题满分13分)已知函数.
(1)求函数的最小正周期和函数
的单调递增区间;
(2)在中,角
,
,
所对的边分别为
,
,
,若
,
,
的面积为
,求边长
的值.
(本题满分14分)已知椭圆的离心率为
,点P(1,
)在该椭圆上.
(1)求椭圆的标准方程;
(2)若直线与圆O:
相切,并椭圆交于不同的两点A、B,求
△AOB面积S的最大值.
(本题满分13分)已知函数,
(a、b为常数).
(1)求函数在点(1,
)处的切线方程;
(2)当函数g(x)在x=2处取得极值-2.求函数的解析式;
(3)当时,设
,若函数
在定义域上存在单调减区间,求实数b的取值范围;