在直角坐标系中,曲线
的参数方程为
,
以原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
⑴ 求曲线的普通方程和曲线
的直角坐标方程;
⑵ 当时,曲线
和
相交于
、
两点,求以线段
为直径的圆的直角坐标方程.
设函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,是否存在整数
,使不等式
恒成立?若存在,求整数
的值;若不存在,请说明理由.
(Ⅲ)关于的方程
在
上恰有两个相异实根,求实数
的取值范围.
已知以向量为方向向量的直线
过点
,抛物线C:
的顶点关于直线
的对称点在该抛物线的准线上.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设A、B是抛物线C上两个动点,过A作平行于x轴的直线m,直线OB与直线m交于点N,若(O为原点,A、B异于原点),试求点N的轨迹方程.
已知数列的前n项和为
,且满足
(Ⅰ)求的值;
(Ⅱ)求数列的通项公式;
如图,平面⊥平面
,四边形
与
都是直角梯形,∠
=∠
=
,
∥
,
∥
,
、
分别为
、
的中点.
(Ⅰ)证明:四边形是平行四边形;
(Ⅱ)、
、
、
四点是否共面?为什么?
(III)设,证明:平面
⊥平面
.
在10支罐装饮料中,有2支是不合格产品,质检员从这10支饮料中抽取2支进行检验。
(Ⅰ)求质检员检验到不合格产品的概率;
(Ⅱ)若把这10支饮料分成甲、乙两组,对其容量进行测量,数据如下表所示(单位:ml):
甲 |
257 |
269 |
260 |
261 |
263 |
乙 |
258 |
259 |
259 |
261 |
263 |
请问哪组饮料的容量更稳定些?并说明理由.