在直角坐标系中,曲线
的参数方程为
,
以原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
⑴ 求曲线的普通方程和曲线
的直角坐标方程;
⑵ 当时,曲线
和
相交于
、
两点,求以线段
为直径的圆的直角坐标方程.
连接直角三角形的直角顶点与斜边的两个三等分点,所得线段的长分别为和
,求斜边长。
等差数列,
的前
项和分别为
,
,若
,求
①;②
。
(本题满分12分.)
数列中{an},a1=8,a4=2,且满足an+2= 2an+1- an,
(1)求数列{an}的通项公式;
(2)设Sn=,求Sn
(本题满分12分.)已知26列货车以相同的速度v由A地驶向相距400千米远的B地,
每两列货车间的距离为d千米,现知d与v速度的平方成正比,且当v=20,d=1.
(1) 写出d关于v的函数解析式式及定义域;
(2)若不计货车的长度,则26列货车都到达B地至少需要多少小时?此时货车速度为多少?
(本题满分12分.)在锐角三角形中,边a,b是方程的两根,
角A,B满足,求角C的度数,边c的长度及三角形ABC的面积