如图,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C丄平面ABCD,且AB=BC=CA=,AD=CD=1.
求证:BD⊥AA1;
若四边形
是菱形,且
,求四棱柱
的体积.
定义在上的函数
,
,当
时,
,且对任意的
,有
,
(1)求的值;
(2)求证:对任意的,恒有
;
(3)判断的单调性,并证明你的结论。
如图,在三棱锥A-BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面是正三角形
(1)求证:AD^BC
(2)求二面角B-AC-D的大小
(3)在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若
不存在,说明理由.
已知函数
(1)讨论函数f (x)的极值情况;
(2)设g (x) =" ln(x" + 1),当x1>x2>0时,试比较f (x1 – x2)与g (x1 – x2)及g (x1) –g (x2)三者的大小;并说明理由.
如图所示,在直三棱柱中,
,
,
,
,点
是棱
的中点.
(Ⅰ)证明:平面AA1C1C平面
;
(Ⅱ)求二面角的余弦值.
设,函数
(Ⅰ)若是函数
的极值点,求实数
的值;
(Ⅱ)若函数在
上是单调减函数,求实数
的取值范围.