已知为椭圆
的左,右焦点,
为椭圆上的动点,且
的最大值为1,最小值为-2.
(I)求椭圆的方程;
(II)过点作不与
轴垂直的直线
交该椭圆于
两点,
为椭圆的左顶点。试判断
的大小是否为定值,并说明理由.
已知平面直角坐标系,以
为极点,
轴的非负半轴为极轴建立极坐标系,,曲线
的参数方程为
.点
是曲线
上两点,点
的极坐标分别为
.
(1)写出曲线的普通方程和极坐标方程;
(2)求的值.
如图所示,为圆
的切线,
为切点,
,
的角平分线与
和圆
分别交于点
和
.
(1)求证(2)求
的值.
已知,函数.
(1)如果时,
恒成立,求m的取值范围;
(2)当时,求证:
.
已知点点
分别是
轴和
轴上的动点,且
,动点
满足
,设动点
的轨迹为E.
(1)求曲线E的方程;
(2)点Q(1,a),M,N为曲线E上不同的三点,且,过M,N两点分别作曲线E的切线,记两切线的交点为
,求
的最小值.
如图,在斜三棱柱中,侧面
⊥底面
,侧棱
与底面
成60°的角,
.底面
是边长为2的正三角形,其重心为
点,
是线段
上一点,且
.
(1)求证://侧面
;
(2)求平面与底面
所成锐二面角的余弦值;