如图,在斜三棱柱中,侧面
⊥底面
,侧棱
与底面
成60°的角,
.底面
是边长为2的正三角形,其重心为
点,
是线段
上一点,且
.
(1)求证://侧面
;
(2)求平面与底面
所成锐二面角的余弦值;
已知中,角A,B,C,所对的边分别是
,且
;
(1)求
(2)若,求
面积的最大值.
(本小题12分)已知点A(0,-2),椭圆E:(a>b>0)的离心率为
,F是椭圆E的右焦点,直线AF的斜率为
,O为坐标原点.
(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.
(本小题12分)在平面直角坐标系中,点
为动点,
分别为椭圆
(a>b>0)的左右焦点.已知△
为等腰三角形.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设直线与椭圆相交于
两点,
是直线
上的点,满足
,求点
的轨迹方程.
(本小题12分)如图,设P是圆上的动点,点D是P在x轴上的射影,M为PD上一点,且
(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程;
(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度
(本小题12分)已知F1,F2分别是椭圆(a>b>0)的左、右焦点,A是椭圆上位于第一象限内的一点,
=0,若椭圆的离心率等于
.
(1)求直线AO的方程(O为坐标原点);
(2)直线AO交椭圆于点B,若△ABF2的面积等于,求椭圆的方程.