为了调查某大学学生在周日上网的时间,随机对名男生和
名女生进行了不记名的问卷调查,得到了如下的统计结果:
表1:男生上网时间与频数分布表
上网时间(分钟) |
![]() |
![]() |
![]() |
![]() |
![]() |
人数 |
5 |
25 |
30 |
25 |
15 |
表2:女生上网时间与频数分布表
上网时间(分钟) |
![]() |
![]() |
![]() |
![]() |
![]() |
人数 |
10 |
20 |
40 |
20 |
10 |
(Ⅰ)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数;
(Ⅱ)完成表3的列联表,并回答能否有90%的把握认为“学生周日上网时间与性别有关”?
(Ⅲ)从表3的男生中“上网时间少于60分钟”和“上网时间不少于60分钟”的人数中用分层抽样的方法抽取一个容量为5的样本,再从中任取两人,求至少有一人上网时间超过60分钟的概率.
表3 :
|
上网时间少于60分钟 |
上网时间不少于60分钟 |
合计 |
男生 |
|
|
|
女生 |
|
|
|
合计 |
|
|
|
附:,其中
![]() |
0.50 |
0.40 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
0.455 |
0.708 |
1.323 |
2.072 |
2.706 |
3.84 |
5.024 |
6.635 |
7.879 |
10.83 |
设函数(
,
).
(I)若函数在其定义域内是减函数,求
的取值范围;
(II)函数是否有最小值?若有最小值,指出其取得最小值时
的值,并证明你的结论.
已知二次函数f(x)=ax2+bx,f(x+1)为偶函数,函数f(x)的图象与直线y=x相切.
(I)求f(x)的解析式;
(II)已知k的取值范围为[,+∞),则是否存在区间[m,n](m<n),使得f(x)在区间[m,n]上的值域恰好为[km,kn]?若存在,请求出区间[m,n];若不存在,请说明理由.
某市的老城区改造建筑用地平面示意图如图所示.经规划调研确定,老城区改造规划建筑用地区域可近似为半径是R的圆面.该圆的内接四边形ABCD是原老城区建筑用地,测量可知边界AB=AD=4万米,BC=6万米,CD=2万米.
(I)请计算原老城区建筑用地ABCD的面积及圆面的半径R的值;
(II)因地理条件的限制,边界AD、CD不能变更,而边界AB、BC可以调整.为了提高老城区改造建筑用地的利用率,请在上设计一点P,使得老城区改造的新建筑用地APCD的面积最大,并求出其最大值.
已知等差数列的公差
,其前n项和为
成等比数列.
(I)求的通项公式;
(II)记,求数列
的前n项和
在中,
、
、
分别是角
、
、
的对边,
且.
(Ⅰ)求角的值;
(Ⅱ)已知函数,求
的单调递增区间