一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.
(Ⅰ)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;
(Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.
如图,长方体中,
,点
分别在
上,
,过点
的平面
与此长方体的面相交,交线围成一个正方形.
(1)在图中画出这个正方形(不必说明画法与理由).
(2)求平面把该长方体分成的两部分体积的比值.
已知正方形ABCD的中心M(-1,0)和一边CD所在的直线方程为x+3y-5=0,求其他三边所在的直线方程.
已知函数的定义域为
.
(Ⅰ)若,求实数
的值;
(Ⅱ)若的最小值为5,求实数
的值;
(Ⅲ)是否存在实数,使得
恒成立?若存在求出
的值,若不存在请说明理由.
已知圆C过点A(1,3),B(2,2),并且直线m:平分圆C的面积.
(Ⅰ)求圆C的方程;
(Ⅱ)若过点D(0,1)且斜率为k的直线与圆C有两个不同的公共点M、N,若
(O为原点),求k的值.
如图,三棱柱中,
平面ABC,AB
BC , 点M , N分别为A1C1与A1B的中点.
(Ⅰ)求证:MN平面BCC1B1;
(Ⅱ)求证:平面A1BC平面A1ABB1.