如图,在四棱锥中,底面
为菱形,
,
为
的中点。
(1)若,求证:平面
;
(2)点在线段
上,
,试确定
的值,使
;
已知函数.
(I)将写成
的形式,并求其图象对称中心的横坐标;
(II)如果△ABC的三边a、b、c满足b2= a c,且边b所对的角为,试求
的范围及此时函数
的值域.
如图,四棱锥P-ABCD的底面是矩形,侧面PAD
是正三角形,且侧面PAD⊥底面ABCD,E为侧棱PD的中点.
(I)试判断直线PB与平面EAC的关系
(文科不必证明,理科必须证明);
(II)求证:AE⊥平面PCD;
(III)若AD=AB,试求二面角A-PC-D
的正切值.
(本小题满分12分)已知数列满足
,
(
,
),
若数列是等比数列.(1)求数列
的通项公式;(2)求证:当
为奇数时,
;(3)求证:
(
).
已知函数,其中为大于零的常数.(1)若函数
在
上单调递增,求
的取值范围;(2)求函数
在区间
上的最小值;(3)求证:对于任意的
且
时,都有
成立.
已知,将
的图象向左平移
个单位后所得的图象关于
对称.(1)求实数
,并求出
取得最大值时的集合;(2)求
的最小正周期,并求
在
上的值域.