如图,AB是⊙O的直径,C是⊙0上的一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且∠BAC=∠DAC.
(1)猜想直线MN与⊙O的位置关系,并说明理由;
(2)若CD=6,cos∠ACD=,求⊙O的半径.
在平面直角坐标系中,二次函数 的图象与 轴交于 , 两点,交 轴于点 ,点 是第四象限内抛物线上的一个动点.
(1)求二次函数的解析式;
(2)如图甲,连接 , , ,若 ,求点 的坐标;
(3)如图乙,过 , , 三点作 ,过点 作 轴,垂足为 ,交 于点 .点 在运动过程中线段 的长是否变化,若有变化,求出 的取值范围;若不变,求 的长.
如图所示, 是 的直径, 和 分别切 于 , 两点, 与 有公共点 ,且 .
(1)求证: 是 的切线;
(2)若 , ,求 的长.
列方程(组 解应用题
某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为 的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长 ,另外三面用 长的篱笆围成,其中一边开有一扇 宽的门(不包括篱笆).求这个茶园的长和宽.
如图所示,某建筑物楼顶有信号塔 ,卓玛同学为了探究信号塔 的高度,从建筑物一层 点沿直线 出发,到达 点时刚好能看到信号塔的最高点 ,测得仰角 , 长7米.接着卓玛再从 点出发,继续沿 方向走了8米后到达 点,此时刚好能看到信号塔的最低点 ,测得仰角 .(不计卓玛同学的身高)求信号塔 的高度(结果保留根号).
某校组织开展运动会,小明和扎西两名同学准备从100米短跑(记为项目 ,800米中长跑(记为项目 ,跳远(记为项目 ,跳高(记为项目 ,即从 , , , 四个项目中,分别选择一个项目参加比赛.请用画树状图或列表法求两名同学选到相同项目的概率.