甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路ι步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小亮之间的距离为s米,小明行走的时间为x分钟.y1、y2与x之间的函数图象如图1,s与x之间的函数图象(部分)如图2.
(1)求小亮从乙地到甲地过程中y1(米)与x(分钟)之间的函数关系式;
(2)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式;
(3)在图2中,补全整个过程中s(米)与x(分钟)之间的函数图象,并确定a的值.
如图,在平面直角坐标系中,点 A(5,0),B(3,2),点C在线段OA上,BC=BA,点Q是线段BC上一个动点,点P的坐标是(0,3),直线PQ的解析式为y=kx+b(k≠0),且与x轴交于点D.
(1)求点C的坐标及b的值;
(2)求k的取值范围;
(3)当k为取值范围内的最大整数时,过点B作BE∥x轴,交PQ于点E,若抛物线y=ax2﹣5ax(a≠0)的顶点在四边形ABED的内部,求a的取值范围.
如图1,在□ABCD中,点E是BC边上的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若AB=6,,求DG的长.
小米的发现,过点E作交BG于点H(如图2),经过推理和计算能够使问题得到解决.则DG=.
如图3,四边形ABCD中,AD∥BC,点E是射线DM上的一点,连接BE和AC相交于点F,若,
,求
的值(用含
的代数式表示).
如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB边上,过点E作EF⊥BC,延长FE交⊙O的切线AG于点G.
(1)求证:GA=GE.
(2)若AC=6,AB=8,BE=3,求线段OE的长.
2015年是中国抗日战争胜利70周年暨世界反法西斯战争胜利70周年.某校为纪念中国抗日战争胜利70周年,对全校学生进行了“抗日战争知多少”知识测验.然后随机抽取了部分学生的成绩,整理并制作如图所示的图表.
请你根据图表中提供的信息,解答下列问题:
分数段 |
频数 |
频率 |
60≤x<70 |
30 |
0.1 |
70≤x<80 |
90 |
m |
80≤x<90 |
n |
0.4 |
90≤x<100 |
60 |
0.2 |
(1)在频数分布表中:________,
________;
(2)补全频数分布直方图;
(3)如果某校有2000名学生,比赛成绩80分以上(含80分)为优秀,那么你估计此次测验成绩的优秀人数大约是__________人.
列方程或方程组解应用题:
为开阔学生的视野在社会大课堂活动中,某校组织初三年级学生参观科技馆,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.求该校初三年级有学生多少人?原计划租用多少辆45座客车?