如图,在直三棱柱中,,,是的中点.(Ⅰ)求证: 平面;(Ⅱ)求二面角的余弦值.
设函数在及时取得极值. (1)求a、b的值; (2)若对于任意的,都有成立,求c的取值范围.
用长为18 cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?
已知椭圆方程为,射线与椭圆的交点为,过作倾斜角互补的两条直线,分别与椭圆于、两点(异于). (1)求证:直线; (2)求面积的最大值.
已知函数f(t)= (1)求f(t)的值域G; (2)若对于G内的所有实数x,不等式恒成立,求实数m的取值范围.
已知,. (1)若,求的值. (2)若,求的单调的递减区间;
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号