某饮料公司对一名员工进行测试以便确定其考评级别.公司准备了两种不同的饮料共5 杯,其颜色完全相同,并且其中3杯为饮料,另外2杯为
饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯
饮料.若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为及格.假设此人对
和
两种饮料没有鉴别能力.
(Ⅰ)求此人被评为优秀的概率;
(Ⅱ)求此人被评为良好及以上的概率.
已知函数,曲线
在点
处的切线与
轴交点的横坐标为
.
(1)求;
(2)证明:当时,曲线
与直线
只有一个交点.
设分别是椭圆
的左右焦点,
是
上一点且
与
轴垂直,直线
与
的另一个交点为
.
(1)若直线的斜率为
,求
的离心率;
(2)若直线在
轴上的截距为
,且
,求
.
如图,四棱锥中,底面
为矩形,
平面
,
是
的中点.
(1)证明://平面
;
(2)设,三棱锥
的体积
,求
到平面
的距离.
某公司为了了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频率分布表.
A地区用户满意度评分的频率分布直方图
B地区用户满意度评分的频率分布表
满意度评分分组 |
![]() |
![]() |
![]() |
![]() |
![]() |
频数 |
2 |
8 |
14 |
10 |
6 |
(Ⅰ)作出B地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)
B地区用户满意度评分的频率分布直方图
(Ⅱ)根据用户满意度评分,将用户的满意度评分分为三个等级:
满意度评分 |
低于70分 |
70分到89分 |
不低于90分 |
满意度等级 |
不满意 |
满意 |
非常满意 |
估计那个地区的用户的满意度等级为不满意的概率大,说明理由.
已知等差数列{an}的公差不为零,a1=25,且,
,
成等比数列.
(Ⅰ)求的通项公式;
(Ⅱ)求+a4+a7+…+a3n-2.