已知椭圆长轴的左右端点分别为A,B,短轴的上端点为M,O为椭圆的中心,F为椭圆的右焦点,且·
=1,|
|=1.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线l交椭圆于P,Q两点,问:是否存在直线l,使得点F恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.
已知函数f(t)= , , .
(Ⅰ)将函数
化简成
的形式;
(Ⅱ)求函数
的值域。
已知以
为首项的数列
满足:
(1)当
,
,
时,求数列
的通项公式;
(2)当
,
,
时,试用
表示数列
的前
项的和
;
(3)当
(
是正整数),
,
时,求证:数列
,
,
,
成等比数列当且仅当
.
设
是平面直角坐标系
中的点,
是经过原点与点
的直线,记
是直线
与抛物线
的异于原点的交点
(1)若
,求点
的坐标;
(2)若点
在椭圆
上,
,求证:点
落在双曲线
上;
(3)若动点
满足
,
,若点
始终落在一条关于
轴对称的抛物线上,试问动点
的轨迹落在哪种二次曲线上,并说明理由.
已知函数
.
(1)若
,求
的值;
(2)若
对于
恒成立,求实数
的取值范围.
已知双曲线
,
为
上的任意点.
(1)求证:点
到双曲线
的两条渐近线的距离的乘积是一个常数;
(2)设点
的坐标为
,求
的最小值.