游客
题文

已知函数.
(1)当时,求曲线在点处的切线方程;
(2)当,且,求函数的单调区间.

科目 数学   题型 解答题   难度 中等
知识点: 组合几何
登录免费查看答案和解析
相关试题

正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A—DC—B。
(I)试判断直线AB与平面DEF的位置关系,并说明理由;
(II)求二面角E—DF—C的余弦值;
(III)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论。

一个口袋中装有大小相同的2个白球和3个黑球。
(I)若采取放回抽样方式,每次摸出一球,从中摸出两球,求两球恰好颜色不同的概率;
(II)若采取放回抽样方式,从中摸出两个球,求摸得白球的个数的分布列与均值。

已知向量,设
(1)求函数的表达式,并求的单调递减区间;
(2)在中,a,b,c分别是角A,B,C的对边,若,求a的值。

(15分)数列{an},a1=1,
(1)求a2,a3的值;
(2)是否存在常数,使得数列是等比数列,若存在,求出的值;若不存在,说明理由;
(3)设

(已知抛物线,过定点的直线交抛物线于A、B两点.
(Ⅰ)分别过A、B作抛物线的两条切线,A、B为切点,求证:这两条切线的交点在定直线上.
(Ⅱ)当时,在抛物线上存在不同的两点P、Q关于直线对称,弦长|PQ|中是否存在最大值?若存在,求其最大值(用表示),若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号