(本小题满分14分)已知函数,
.
(Ⅰ)求函数的极值点;(Ⅱ)若函数
在
上有零点,求
的最大值;(Ⅲ)证明:当
时,有
成立;若
(
),试问数列
中是否存在
?若存在,求出所有相等的两项;若不存在,请说明理由.(
为自然对数的底数)
(本小题满分14分)已知函数.
(Ⅰ)判断
的奇偶性;(Ⅱ)设方程
的两实根为
,证明函数
是
上的增函数.
(本小题满分13分)某隧道长2150m,通过隧道的车速不能超过m/s.一列有55辆车身长都为10m的同一车型的车队(这种型号的车能行驶的最高速为40m/s),匀速通过该隧道,设车队的速度为
m/s ,根据安全和车流的需要,当
时,相邻两车之间保持20 m的距离;当
时,相邻两车之间保持
m的距离.自第1辆车车头进入隧道至第55辆车尾离开隧道所用的时间为
.(I)将
表示为
的
函数;(II)求车队通过隧道时间
的最小值及此时车队的速度.
(本小题满分13分)设数列的前
项和为
,且
;数列
为等差数列,且
.
(Ⅰ)求数列的通项公式;(Ⅱ)若
为数列
的前
项和,求
.
(本小题满分13分)设函数.
(Ⅰ)求函数
的单调区间;(Ⅱ)若常数
,求不等式
的解集.