已知函数f(x)=x
-ax+(a-1)
,
。
(1)讨论函数的单调性;(2)若
,设
,
(ⅰ)求证g(x)为单调递增函数;
(ⅱ)求证对任意x,x
,x
x
,有
.
已知两条直线与
的交点
,求:(1)过点
且过原点的直线方程;(2)过点
且垂直于直线
的直线
的方程。
直三棱柱是
的中点.
(Ⅰ)求证:;
(Ⅱ)求证:.
如图所示,已知圆为圆上一动点,点
在
上,点
在
上,且满足
的轨迹为曲线
.
(1)求曲线的方程;
(2)若直线与(1)中所求点
的轨迹
交于不同两点
是坐标原点,且
,求△
的面积的取值范围.
【改编】如图,在边长为1的等边三角形中,
分别是
边上的点,
,
是
的中点,
与
交于点
,将
沿
折起,使得平面
平面
,得到如图所示的三棱锥
.
(1)证明://平面
;
(2)证明:平面
;
(3)当时,求三棱锥
的体积
.
如图,正三棱柱ABC-A'B'C'中,D是BC的中点,AA'=AB=2
(1)求证:ADB'D;
(2)求三棱锥A'-AB'D的体积。