设
,函数
.
(1)若
,求函数
的极值与单调区间;
(2)若函数
的图象在
处的切线与直线
平行,求
的值;
(3)若函数
的图象与直线
有三个公共点,求
的取值范围.
已知
(
)是曲线
上的点,
,
是数列
的前
项和,且满足
,
,
.
(1)证明:数列
(
)是常数数列;
(2)确定
的取值集合
,使
时,数列
是单调递增数列;
(3)证明:当
时,弦
(
)的斜率随
单调递增
已知椭圆
的左右焦点分别为
,短轴两个端点为
,且四边形
是边长为2的正方形.
(1)求椭圆的方程;
(2)若
分别是椭圆长轴的左右端点,动点
满足
,连接
,交椭圆于点
.证明:
为定值;
(3)在(2)的条件下,试问
轴上是否存在异于点
的定点
,使得以
为直径的圆恒过直线
的交点,若存在,求出点
的坐标;若不存在,请说明理由.
如图,某机场建在一个海湾的半岛上,飞机跑道AB的长为4.5km,且跑道所在的直线与海岸线l的夹角为60o(海岸线可以看作是直线),跑道上离海岸线距离最近的点B到海岸线的距离BC=4
km.D为海湾一侧海岸线CT上的一点,设CD=x(km),点D对跑道AB的视角为q.
(1)将tanq表示为x的函数;
(2)求点D的位置,使q取得最大值.
如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是平行四边形,且AC⊥CD,PA=AD,M,Q分别是PD,BC的中点.
(1)求证:MQ∥平面PAB;
(2)若AN⊥PC,垂足为N,求证:MN⊥PD.
已知函数
(
,
是实数常数)的图像上的一个最高点
,与该最高点最近的一个最低点是
,
(1)求函数
的解析式及其单调增区间;
(2)在锐角三角形△ABC中,角A、B、C所对的边分别为
,且
,角A的取值范围是区间M,当
时,试求函数
的取值范围.