在股票市场上,投资者常参考股价(每一股的价格)的某条平滑均线的变化情况来决定买入或卖出股票。股民老张在研究股票的走势图时,发现一只股票的均线近期走得很有特点:如果按如图所示的方式建立平面直角坐标系,则股价
(元)和时间
的关系在
段可近似地用解析式
来描述,从
点走到今天的
点,是震荡筑底阶段,而今天出现了明显的筑底结束的标志,且
点和
点正好关于直线
:
对称。老张预计这只股票未来的走势如图中虚线所示,这里
段与
段关于直线
对称,
段是股价延续
段的趋势(规律)走到这波上升行
情的最高点。现在老张决定取点
,点
,点
来确定解析式中的常数
,
,
,
,并且求得
。
(Ⅰ)请你帮老张算出,
,
,并回答股价什么时候见顶(即求
点的横坐标)
(Ⅱ)老张如能在今天以点处的价格买入该股票3000股,到见顶处
点的价格全部卖出,不计其它费用,这次操作他能赚多少元?
是公比大于
的等比数列,
是
的前
项和.若
,且
,
,
构成等差数列.
(Ⅰ)求的通项公式.
(Ⅱ)令,求数列
的前
项和
.
设函数.
(1)若x=时,
取得极值,求
的值;
(2)若在其定义域内为增函数,求
的取值范围;
(3)设,当
=-1时,证明
在其定义域内恒成立,并证明
(
).
已知椭圆的离心率为
,且过点
.
(1)求椭圆的方程;
(2)若过点C(-1,0)且斜率为的直线
与椭圆相交于不同的两点
,试问在
轴上是否存在点
,使
是与
无关的常数?若存在,求出点
的坐标;若不存在,请说明理由.
某面包厂2011年利润为100万元,因市场竞争,若不开发新项目,预测从2012年起每年利润比上一年减少4万元.2012年初,该面包厂一次性投入90万元开发新项目,预测在未扣除开发所投入资金的情况下,第年(
为正整数,2012年为第一年)的利润为
万元.设从2012年起的前
年,该厂不开发新项目的累计利润为
万元,开发新项目的累计利润为
万元(须扣除开发所投入资金).
(1)求,
的表达式;
(2)问该新项目的开发是否有效(即开发新项目的累计利润超过不开发新项目的累计利润),如果有效,从第几年开始有效;如果无效,请说明理由.
如图,在四棱锥中,底面
是直角梯形,
∥
,
,
⊥平面SAD,点
是
的中点,且
,
.
(1)求四棱锥的体积;
(2)求证:∥平面
;
(3)求直线和平面
所成的角的正弦值.