已知等差数列{an}中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4,数列{bn}满足bn=,其前n项和为Sn.
(1)求数列{an}的通项公式;
(2)若S2为S1,Sm (m∈N*)的等比中项,求正整数m的值.
(3)对任意正整数k,将等差数列{an}中落入区间(2k,22k)内项的个数记为ck,求数列{cn}的前n项和Tn
(本小题满分14分)已知椭圆,其中
为左、右焦点,O为坐标原点.直线l与椭圆交于
两个不同点.当直线l过椭圆C右焦点F2且倾斜角为
时,原点O到直线l的距离为
.又椭圆上的点到焦点F2的最近距离为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)以OP,OQ为邻边做平行四边形OQNP,当平行四边形OQNP面积为时,求平行四边形OQNP的对角线之积
的最大值;
(Ⅲ)若抛物线为焦点,在抛物线C2上任取一点S(S不是原点O),以OS为直径作圆,交抛物线C2于另一点R,求该圆面积最小时点S的坐标.
(本小题满分13分) 已知函数,其中e为自然对数的底数.
(Ⅰ)求曲线在点
处的切线方程;
(Ⅱ)若对任意,不等式
恒成立,求实数m的取值范围;
(Ⅲ)试探究当时,方程
的解的个数,并说明理由.
(本小题满分12分)已知数列中,
(Ⅰ)求证:数列是等比数列;
(Ⅱ)若是数列
的前n项和,求满足
的所有正整数n.
(本小题满分12分)学校为测评班级学生对任课教师的满意度,采用“100分制”打分的方式来计分.现从某班学生中随机抽取10名,以下茎叶图记录了他们对某教师的满意度分数(以十位数字为茎,个位数字为叶):
规定若满意度不低于98分,测评价该教师为“优秀”.
(Ⅰ)求从这10人中随机选取3人,至多有1人评价该教师是“优秀”的概率;
(Ⅱ)以这10人的样本数据来估计整个班级的总体数据,若从该班任选3人,
记表示抽到评价该教师为“优秀”的人数,求
的分布列及数学期望.
(本小题满分12分)在如图所示的空间几何体中,平面平面ABC,
是边长为2的等边三角形,BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在
的平分线上.
(Ⅰ)求证:DE//平面ABC;
(Ⅱ)求二面角的余弦值.