选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系.已知点A的极坐标为,直线的极坐标方程为
,且点A在直线上.
(1)求a的值及直线的直角坐标方程;
(2)圆C的参数方程为,(α为参数),试判断直线与圆的位置关系.
选修4-1:几何证明选讲
如图是
直径,
是
切线,
交
于点
(1)若D为
中点,求证:
是
切线;
(2)若,求
的大小.
已知函数(其中a为常数).
(1)当a=0时,求函数的单调区间;
(2)当0<a<1时,设函数的3个极值点为
,且
.证明:
.
已知中心在原点,焦点在
轴上,离心率为
的椭圆过点
(1)求椭圆的方程;
(2)设不过原点的直线
与该椭圆交于
两点,满足直线
的斜率依次成等比数列,求
面积的取值范围.
如图,在三棱锥P-ABC中,.
(1)求证:平面PBC⊥平面PAC;
(2)若PA=1,AB=2,BC=,在直线AC上是否存在一点D,使得直线BD与平面PBC所成角为30°?若存在,求出CD的长;若不存在,说明理由.