已知数列 a n 与 b n 满足 b n + 1 a n + b n a n + 1 = - 2 n + 1 , b n = 3 + - 1 n - 1 2 , n ∈ N * , 且 a 1 = 2 .
(1)求 a 2 , a 3 的值 (2)设 c n = a 2 n + 1 ﹣ a 2 n - 1 , n ∈ N * ,证明 c n 是等比数列 (3)设 S n 为 a n 的前 n 项和,证明 S 1 a 1 + S 2 a 2 + ⋯ + S 2 n - 1 a 2 n - 1 + S 2 n a 2 n ⩽ n - 1 3 n ∈ N *
已知函数,常数. (1)讨论函数的奇偶性,并说明理由; (2)若函数在上为增函数,求的取值范围.
已知. (1)求sinx-cosx的值; (2)求的值.
已知x>0, y>0, 且x+y="1," 求的最小值。
(本小题满分13分) 已知数列{ an }的前n项和Sn满足,Sn=2an+(—1)n,n≥1。 (1)求数列{ an }的通项公式; (2)求证:对任意整数m>4,有
(本小题满分13分) 已知函数 (1)若且函数的值域为,求的表达式; (2)设为偶函数,判断能否大于零?并说明理由。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号