某批发商以每件50元的价格购进800件T恤.第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓,清仓时单价为40元.设第二个月单价降低x元.
(1)填表:
时间 |
第一个月 |
第二个月 |
清仓 |
单价(元) |
80 |
|
40 |
销售量(件) |
200 |
|
|
(2)如果批发商希望通过销售这批T恤获利9 000元,那么第二个月的单价应是多少元?
(1)解不等式组:(2)因式分解:
解:(1) 解:(2)
在科技馆里,小亮看见一台名为帕斯卡三角的仪器,如图所示,当一实心小球从入口落下,它在依次碰到每层菱形挡块时,会等可能地向左或向右落下.
(1)试问小球通过第二层位置的概率是多少?
(2)请用学过的数学方法模拟试验,并具体说明小球下落到第三层位置和第四层
位置处的概率各是多少?解:
|
下图是由权威机构发布的,在1993年4月~2005年4月期间由中国经济状况指标之一中国经济预警指数绘制的图表.
(1)请你仔细阅读图表,可从图表已知抛物线与x轴交于不同的两点
和
,与y轴交于点C,且
是方程
的两个根(
).
(1)求抛物线的解析式;
(2)过点A作AD∥CB交抛物线于点D,求四边形ACBD的面积;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作平行于x轴的直线l交BC于点Q,那么在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,直线分别交
轴、
轴于
两点.点
、
,以
为一边在
轴上方作矩形
,且
.设矩形
与
重叠部分的面积为
.
(1)求点、
的坐标;
(2)当值由小到大变化时,求
与
的函数关系式;
(3)若在直线上存在点
,使
等于
,请直接写出
的取值范围.