课本中把长与宽之比为的矩形纸片称为标准纸.请解决下列问题:
(1)将一张标准纸ABCD(AB<BC)对开,如图1所示,所得的矩形纸片ABEF是标准纸.请给予证明;
(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(AB<BC)进行如下操作:
第一步:沿过A点的直线折叠,使B点落在AD边上点F处,折痕为AE(如图2甲);
第二步:沿过D点的直线折叠,使C点落在AD边上点N处,折痕为DG(如图2乙) .此时E点恰好落在AE边上的点M处;
第三步:沿直线DM折叠(如图2丙),此时点G恰好与N点重合.
请你研究,矩形纸片ABCD是否是一张标准纸?请说明理由.
(3)不难发现,将一张标准纸如图3一次又一次对开后,所得的矩形纸片都是标准纸.现有一张标准纸ABCD,AB=1,BC=,问第5次对开后所得标准纸的周长是多少?探索并直接写出第2002次对开后所得标准纸的周长.
某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C:羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有人;
(2)请你将条形统计图(2)补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
(1)如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.
(2)如图,AC是⊙O的直径,弦BD交AC于点E。①求证:△ADE∽△BCE;②如果=AE·AC,求证:CD=CB
(1)计算:-2sin45°+
(2)化简:
我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如下图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)求“蛋圆”抛物线部分的解析式,并写出自变量的取值范围;
(2)求出经过点C的“蛋圆”切线的解析式;
(3)P点在线段OB上运动,过P作x轴的垂线,交抛物线于点E,交BD于点F.连结DE和BE后,是否存在这样的点E,使△BDE的面积最大,若存在,请求出点E的坐标和△BDE面积的最大值,若不存在,请说明理由.
我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…… ① (其中
、
、
为三角形的三边长,
为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:
…… ②(其中
).
(1)若已知三角形的三边长分别为5、7、8,试分别运用公式①和公式②,计算该三角形的面积(结果保留根号);
(2)你能否由公式①推导出公式②?请试试.