(阅读下面的题目及分析过程,并按要求进行证明.
已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.
求证:AB=CD.
分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.
现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.
如图,在平面直角坐标 中,正比例函数 的图象与反比例函数 的图象都经过点 .
(1)分别求这两个函数的表达式;
(2)将直线 向上平移3个单位长度后与 轴交于点 ,与反比例函数图象在第四象限内的交点为 ,连接 , ,求点 的坐标及 的面积.
在四张编号为 , , , 的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.
(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用 , , , 表示);
(2)我们知道,满足 的三个正整数 , , 成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.
在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点 处安置测倾器,量出高度 ,测得旗杆顶端 的仰角 ,量出测点 到旗杆底部 的水平距离 ,根据测量数据,求旗杆 的高度.(参考数据: , ,
如图,在平面直角坐标系中,抛物线 与 轴交于点 、 (点 在点 的左侧),该抛物线的对称轴与直线 相交于点 ,与 轴相交于点 ,点 在直线 上(不与原点重合),连接 ,过点 作 交 轴于点 ,连接 .
(1)如图①所示,若抛物线顶点的纵坐标为 ,求抛物线的解析式;
(2)求 、 两点的坐标;
(3)如图②所示,小红在探究点 的位置发现:当点 与点 重合时, 的大小为定值,进而猜想:对于直线 上任意一点 (不与原点重合), 的大小为定值.请你判断该猜想是否正确,并说明理由.
如图,随着我市铁路建设进程的加快,现规划从 地到 地有一条笔直的铁路通过,但在附近的 处有一大型油库,现测得油库 在 地的北偏东 方向上,在 地的西北方向上, 的距离为 米.已知在以油库 为中心,半径为200米的范围内施工均会对油库的安全造成影响.问若在此路段修建铁路,油库 是否会受到影响?请说明理由.