矩形的中心在坐标原点,边
与
轴平行,
=8,
=6.
分别是矩形四条边的中点,
是线段
的四等分点,
是线段
的四等分点.设直线
与
,
与
,
与
的交点依次为
.
(1)以为长轴,以
为短轴的椭圆Q的方程;
(2)根据条件可判定点都在(1)中的椭圆Q上,请以点L为例,给出证明(即证明点L在椭圆Q上).
(3)设线段的
(
等分点从左向右依次为
,线段
的
等分点从上向下依次为
,那么直线
与哪条直线的交点一定在椭圆Q上?(写出结果即可,此问不要求证明)
记公差不为0的等差数列的前
项和为
,S3=9,
成等比数列.
(1)求数列的通项公式
及
;
(2)若, n=1,2,3, ,问是否存在实数
,使得数列
为单调递增数列?若存在,请求出
的取值范围;不存在,请说明理由.
在△ABC中,a,b,c分别是内角A,B,C的对边,.
(1)若,求△ABC的面积S△ABC;
(2)若是边
中点,且
,求边
的长.
已知函数f (t)=log2(2-t)+的定义域为D.
(1)求D;
(2)若函数g (x)=x2+2mx-m2在D上存在最小值2,求实数m的值.
已知向量m=(sinωx,cosωx),n=(cosωx,cosωx),其中ω>0,函数2m·n-1的最小正周期为π.
(1)求ω的值;
(2)求函数在[
,
]上的最大值.
已知函数(m,n为常数,
…是自然对数的底数),曲线
在点
处的切线方程是
.
(1)求m,n的值;
(2)求的单调区间;
(3)设(其中
为
的导函数),证明:对任意
,
.