游客
题文

矩形的中心在坐标原点,边轴平行,=8,=6.分别是矩形四条边的中点,是线段的四等分点,是线段的四等分点.设直线,,的交点依次为.

(1)以为长轴,以为短轴的椭圆Q的方程;
(2)根据条件可判定点都在(1)中的椭圆Q上,请以点L为例,给出证明(即证明点L在椭圆Q上).
(3)设线段等分点从左向右依次为,线段等分点从上向下依次为,那么直线与哪条直线的交点一定在椭圆Q上?(写出结果即可,此问不要求证明)

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

记公差不为0的等差数列的前项和为,S3=9,成等比数列.
(1)求数列的通项公式
(2)若, n=1,2,3, ,问是否存在实数,使得数列为单调递增数列?若存在,请求出的取值范围;不存在,请说明理由.

在△ABC中,a,b,c分别是内角A,B,C的对边,
(1)若,求△ABC的面积S△ABC
(2)若是边中点,且,求边的长.

已知函数f (t)=log2(2-t)+的定义域为D.
(1)求D;
(2)若函数g (x)=x2+2mx-m2在D上存在最小值2,求实数m的值.

已知向量m=(sinωx,cosωx),n=(cosωx,cosωx),其中ω>0,函数2m·n-1的最小正周期为π.
(1)求ω的值;
(2)求函数在[]上的最大值.

已知函数(m,n为常数,…是自然对数的底数),曲线在点处的切线方程是
(1)求m,n的值;
(2)求的单调区间;
(3)设(其中的导函数),证明:对任意

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号