已知向量函数.(1)求函数的最小正周期及单调递减区间;(2)在锐角三角形ABC中,的对边分别是,且满足求 的取值范围.
在极坐标中,已知圆经过点,圆心为直线与极轴的交点,求圆的极坐标方程.
已知函数的定义域为,若在上为增函数,则称为“一阶比增函数”. (Ⅰ) 若是“一阶比增函数”,求实数的取值范围; (Ⅱ) 若是“一阶比增函数”,求证:,; (Ⅲ)若是“一阶比增函数”,且有零点,求证:有解.
已知函数是幂函数且在上为减函数,函数在区间上的最大值为2,试求实数的值。
设函数. (I)当时,求的单调区间; (II)若对恒成立,求实数的取值范围.
已知命题:“,都有不等式成立”是真命题。 (I)求实数的取值集合; (II)设不等式的解集为,若是的充分不必要条件,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号