设函数.
(1)在区间上画出函数
的图象 ;
(2)设集合. 试判断集合
和
之间的关系,并给出证明.
已知双曲线,
、
是双曲线的左右顶点,
是双曲线上除两顶点外的一点,直线
与直线
的斜率之积是
,
求双曲线的离心率;
若该双曲线的焦点到渐近线的距离是,求双曲线的方程.
如图,抛物线关于轴对称,它的顶点在坐标原点,点P(1,2),
,
均在抛物线上.
(1)求该抛物线方程;
(2)若AB的中点坐标为,求直线AB方程.
已知函数,
.
(1)如果函数在
上是单调减函数,求
的取值范围;
(2)是否存在实数,使得方程
在区间
内有且只有两个不相等的实数根?若存在,请求出
的取值范围;若不存在,请说明理由.
已知函数在
与
时,都取得极值.
(1)求的值;
(2)若,求
的单调区间和极值;
(3)若对都有
恒成立,求
的取值范围.
在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,,
、
分别为
、
的中点.
(1)求二面角的余弦值;
(2)求点到平面
的距离.