设函数.
(1)当时,求曲线
在
处的切线方程;
(2)当时,求函数
的单调区间;
(3)在(2)的条件下,设函数,若对于
[1,2],
[0,1],使
成立,求实数
的取值范围.
(本题满分9分)
如图所示的多面体中,已知直角梯形和矩形
所在的平面互相垂直,
,
,
,
.
(Ⅰ)证明:平面
;
(Ⅱ)设二面角的平面角为
,求
的值;
(Ⅲ)为
的中点,在
上是否存在一点
,使得
∥平面
?若存在,求出
的长;若不存在,请说明理由.
(本题满分8分)
已知经过点的圆
与圆
相交,它们的公共弦平行于直线
.
(Ⅰ)求圆的方程;
(Ⅱ)若动圆经过一定点
,且与圆
外切,求动圆圆心
的轨迹方程.
(本题满分7分)
已知直线:
与
轴和
轴分别交于
两点,直线
经过点
且与直线
垂直,垂足为
.
(Ⅰ)求直线的方程与点
的坐标;
(Ⅱ)若将四边形(
为坐标原点)绕
轴旋转一周得到一几何体,求该几何体的体积
.
(本题满分6分)
已知:方程
表示双曲线,
:过点
的直线与椭圆
恒有公共点,若
为真命题,求
的取值范围.
(本题满分15分) 设抛物线C1:x 2=4 y的焦点为F,曲线C2与C1关于原点对称.
(Ⅰ) 求曲线C2的方程;
(Ⅱ) 曲线C2上是否存在一点P(异于原点),过点P作C1的两条切线PA,PB,切点A,B,满足| AB |是 | FA | 与 | FB | 的等差中项?若存在,求出点P的坐标;若不存在,请说明理由.