游客
题文

将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示,将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示,观察图2可知:与BC相等的线段是______,∠CAC′=______°。

问题探究:如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q,试探究EP与FQ之间的数量关系,并证明你的结论.,

拓展延伸:如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H,若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由。

科目 数学   题型 解答题   难度 中等
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

已知任意三角形的三边长,如何求三角形面积?

古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式 S = p ( p - a ) ( p - b ) ( p - c ) (其中abc是三角形的三边长, p = a + b + c 2 S为三角形的面积),并给出了证明

例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:

a=3,b=4,c=5

p = a + b + c 2 = 6

S = p ( p - a ) ( p - b ) ( p - c ) = 6 × 3 × 2 × 1 = 6

事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.

根据上述材料,解答下列问题:

如图,在△ABC中,BC=5,AC=6,AB=9

(1)用海伦公式求△ABC的面积;

(2)求△ABC的内切圆半径r

某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩m(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:

(1)本次抽取样本容量为  ,扇形统计图中A类所对的圆心角是  度;

(2)请补全统计图;

(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?

如图,▱ABCD的对角线ACBD相交于点OEF分别是OAOC的中点,连接BEDF

(1)根据题意,补全图形;

(2)求证:BEDF

如图1,在正方形ABCD内作∠EAF=45°,AEBC于点EAFCD于点F,连接EF,过点AAHEF,垂足为H

(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG

①求证:△AGE≌△AFE

②若BE=2,DF=3,求AH的长.

(2)如图3,连接BDAE于点M,交AF于点N.请探究并猜想:线段BMMNND之间有什么数量关系?并说明理由.

如图,抛物线yax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C

(1)求该抛物线的解析式;

(2)若点Ex轴下方抛物线上的一动点,当SABESABC时,求点E的坐标;

(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号