如图,在平面直角坐标系中,已知椭圆
经过点
,椭圆的离心率
.
(1)求椭圆的方程;
(2)过点作两直线与椭圆
分别交于相异两点
、
.若
的平分线与
轴平行, 试探究直线
的斜率是否为定值?若是, 请给予证明;若不是, 请说明理由.
如图,四边形 为正方形, 平面 .
(I)证明:
平面
;
(II)求棱锥
的体积与棱锥
的体积的比值.
的三个内角 、 、 所对的边分别为 , , , .
(1)求
(2)若 ,求 .
已知函数
.
(I)证明:
;
(II)求不等式
的解集.
在平面直角坐标系 中,曲线 的参数方程为 ( 为参数)曲线 的参数方程为 ( , 为参数)在以 为极点, 轴的正半轴为极轴的极坐标系中,射线 : 与 , 各有一个交点.当 时,这两个交点间的距离为 ,当 时,这两个交点重合.
(1)分别说明
,
是什么曲线,并求出
与
的值;
(2)设当
时,
与
,
的交点分别为
,
,当
时,
与
,
的交点为
,
,求四边形
的面积.