由于当前学生课业负担较重,造成青少年视力普遍下降,现从某中学随机抽取16名学生,经校医用对数视力表检査得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:
(I )若视力测试结果不低于5 0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;
(II)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记表示抽到“好视力”学生的人数,求
的分布列及数学期望,据此估计该校高中学生(共有5600人)好视力的人数
已知函数定义域为
(
),设
.
(Ⅰ)试确定的取值范围,使得函数
在
上为单调函数;
(Ⅱ)求证:;
(Ⅲ)求证:对于任意的,总存在
,满足
,并确定这样的
的个数 (其中
为函数
的导函数) .
过轴上的动点
,引抛物线
两条切线
,
为切点。
(Ⅰ)求证:直线过定点
,并求出定点
坐标;
(Ⅱ)若,设弦
的中点为
,试求
的最小值(
为坐标原点).
如图,已知平面平面
=
,
,且
,二面角
.
(Ⅰ)求点到平面
的距离;
(Ⅱ)设二面角的大小为
,求
的值.
甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与
,且乙投球2次均未命中的概率为
.
(Ⅰ)求乙投球的命中率;
(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为,求
的分布列和数学期望.
已知向量,
,
.
(Ⅰ)求的值;
(Ⅱ)若,
, 且
, 求
的值。