如图,正方形ADEF与梯形ABCD所在平面互相垂直,AD⊥CD,AB//CD,AB=AD=,点M在线段EC上且不与E、C垂合.
(1)当点M是EC中点时,求证:BM//平面ADEF;
(2)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M—BDE的体积.
已知8支球队中有3支弱队,以抽签方式将这8支球队分为A、B两组,每组4支。求:
(1)A、B两组中有一组恰有两支弱队的概率;
(2)A组中至少有两支弱队的概率。
从一副扑克牌(没有大、小王)的52张牌中任取两张,求:
(1)两张是不同花色牌的概率;
(2)至少有一张是红心的概率.
如图3-2,设有一个等边三角形网格,其中每个最小等边三角形的边长都是cm,现用直径等于2cm的硬币投掷到此网格上,求硬币落下后与格线没有公共点的概率.
图3-2
有两个人在一座11层大楼的底层进入电梯,设他们中的每一个人自第二层开始的每一层离开是等可能的,求两个人在不同层离开的概率.
有三个游戏规则,袋子中分别装有球,从袋中无放回地取球,具体规则如下:
规则编号 |
游戏① |
游戏② |
游戏③ |
袋子球数 |
1个红球和1个白球 |
2个红球和2个白球 |
3个红球和2个白球 |
规则 |
取1个球,取出的球是红球则获奖 |
取2个球,取出的球同色则获奖 |
取2个球,取出的球不同色则获奖 |
每个同学可选择参加两项游戏,请你选择,并说出道理.