已知是曲线C:
上的一点(其中
),过点
作与曲线C在
处的切线垂直的直线
交
轴于点
,过
作与
轴垂直的直线
与曲线C在第一象限交于点
;再过点
作与曲线C在
处的切线垂直的直线
交轴于点
,过
作与
轴垂直的直线
与曲线C在第一象限交于点
;如此继续下去,得一系列的点
、
、、
、。(其中
)
(1)求数列的通项公式。
(2)若,且
是数列
的前
项和,
是数列
的前
项
如图,在三棱锥P -ABC中,点P在平面ABC上的射影D是AC的中点.BC ="2AC=8,AB" =
(I )证明:平面PBC丄平面PAC
(II)若PD =,求二面角A-PB-C的平面角的余弦值.
某大学体育学院在2012年新招的大一学生中,随机抽取了 40名男生,他们的身高(单位:cm)情况共分成五组:第1组[175,180),第 2 组[180,185),第 3 组 [185,190),第 4 组[190,195),第 5 组[195,200) .得到的频率分布直方图(局部)如图所示,同时规定身高在185cm以上(含185cm)的学生成为组建该校篮球队的“预备生”.
(I)求第四组的频率并补布直方图;
(II)如果用分层抽样的方法从“预备生”和“非预备生”中选出5人,再从这5人中随机选2人,那么至少有1人是“预备生”的概率是多少?
(III)若该校决定在第4,5组中随机抽取2名学生接受技能测试,第5组中有ζ名学生接受测试,试求ζ的分布列和数学期望.
已ΔABC的内角A,B,C对的边分别为a,b,c=" (2a,C" -26) ,
= (cosC,l),且
丄
.
(I)求角A的大小;
(II )若a = 1,求b +c的取值范围.
已知函数.
(I)证明:;
(II)求不等式的解集.
在直接坐标系中,直线
的方程为
,曲线
的参数方程为
(
为参数)
(I)已知在极坐标(与直角坐标系取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,点
的极坐标为(4,
),判断点
与直线
的位置关系;
(II)设点是曲线
上的一个动点,求它到直线
的距离的最小值.