随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.
(1)计算甲班的样本方差;
(2)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.
的图象在
处的切线方程为
(1)求的解析式;
(2)求在
上的最值。
求过圆的圆心且与极轴垂直的直线的极坐标方程。
有如下结论:“圆上一点
处的切线方程为
”,类比也有结论:“椭圆
处的切线方程为
”,过椭圆C:
的右准线l上任意一点M引椭圆C的两条切线,切点为 A、B.
(1)求证:直线AB恒过一定点;
(2)当点M的纵坐标为1时,求△ABM的面积.
设函数(其中
)的图象在
处的切线与直线
平行.
(1)求的值;
(2)求函数在区间[0,1]的最小值;
(3)若,
,
,且
,试根据上述(1)、(2)的结论证明:
.
已知各项均为正数的数列满足:
,且
.
(1)求证:数列是等比数列;
(2)设,
,求
,并确定最小的正整数n,使
为整数.