已知向量与
,其中
(Ⅰ)若,求
和
的值;
(Ⅱ)若,求
的值域.
某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取件产品作为样本称出它们的重量(单位:克),重量值落在
的产品为合格品,否则为不合格品.图
是甲流水线样本的频率分布直方图,表
是乙流水线样本频数分布表.
(Ⅰ) 若以频率作为概率,试估计从甲流水线上任取件产品,求其中合格品的件数
的数学期望;
(Ⅱ)从乙流水线样本的不合格品中任意取件,求其中超过合格品重量的件数
的分布列;
(Ⅲ)由以上统计数据完成下面列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关” .
甲流水线 |
乙流水线 |
合计 |
|
合格品 |
![]() |
![]() |
|
不合格品 |
![]() |
![]() |
|
合 计 |
![]() |
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
附:下面的临界值表供参考:
(参考公式:,其中
)
已知函数(I)求
的单调递增区间;(II)在
中,三内角
的对边分别为
,已知,
成等差数列,且
,求
的值.
已知数列满足:
,
,数列
满足
,
.(Ⅰ)求数列
的通项
; (Ⅱ)求证:数列
为等比数列;并求数列
的通项公式.
选修4—5:不等式选讲设正有理数是
的一个近似值,令
.
(Ⅰ)若,求证:
;
(Ⅱ)比较与
哪一个更接近于
?
选修4-4:坐标系与参数方程选讲. 在极坐标系中, O为极点, 半径为2的圆C的圆心的极坐标为.
(1)求圆C的极坐标方程;
(2)在以极点O为原点,以极轴为x轴正半轴建立的直角坐标系中,直线的参数方程为
(t为参数),直线
与圆C相交于A,B两点,已知定点
,求|MA|·|MB|。