已知.
(1)曲线y=f(x)在x=0处的切线恰与直线垂直,求
的值;
(2)若x∈[a,2a]求f(x)的最大值;
(3)若f(x1)=f(x2)=0(x1<x2),求证:.
(本小题满分12分)
已知是函数
图象的一条对称轴.
(Ⅰ)求的值;
(Ⅱ)作出函数在
上的图象简图(不要求书写作图过程).
(本小题满分12分)
已知集合,集合
,求集合
(本小题满分14分)
已知函数.
(Ⅰ)求函数的极大值;
(Ⅱ)若对满足
的任意实数
恒成立,求实数
的取值范围(这里
是自然对数的底数);
(Ⅲ)求证:对任意正数、
、
、
,恒有
.
(本小题满分14分)
已知是正数组成的数列,
,且点
在函数
的图象上.数列
满足
,
.
(Ⅰ)求数列、
的通项公式;
(Ⅱ)若,求数列
的前
项和
.
(本小题满分13分)
某工厂去年的某产品的年销售量为100万只,每只产品的销售价为10元,每只产品固定成本为8元.今年,工厂第一次投入100万元(科技成本),并计划以后每年比上一年多投入100万元(科技成本),预计销售量从今年开始每年比上一年增加10万只,第n次投入后,每只产品的固定成本为(
且n≥0),若产品销售价保持不变,第n次投入后的年利润为
万元.
(Ⅰ)求出的表达式;
(Ⅱ)若今年是第1年,问第几年年利润最高?最高利润为多少万元?