游客
题文

已知曲线C的极坐标方程为,直线的参数方程为( t为参数,0≤).
(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(Ⅱ)若直线经过点(1,0),求直线被曲线C截得的线段AB的长.

科目 数学   题型 解答题   难度 中等
知识点: 参数方程
登录免费查看答案和解析
相关试题

(本小题满分13分)某校要用三辆汽车从新校区把教职工接到老校区,已知从新校区到老校区有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为,不堵车的概率为.若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.
(Ⅰ)若三辆汽车中恰有一辆汽车被堵的概率为,求走公路②堵车的概率;
(Ⅱ)在(1)的条件下,求三辆汽车中被堵车辆的个数的分布列和数学期望

(本小题满分12分)已知函数的最小正周期为
(1)求的单调递增区间;
(2)在中,角的对边长分别是满足,求函数的取值范围.

若一个数列各项取倒数后按原来的顺序构成等差数列,则称这个数列为调和数列.已知数列是调和数列,对于各项都是正数的数列,满足
(Ⅰ)证明数列是等比数列;

(Ⅱ)把数列中所有项按如图所示的规律排成一个三角形
数表,当时,求第行各数的和;
(Ⅲ)对于(Ⅱ)中的数列,证明:

(本小题满分13分)
已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点,过点的直线与椭圆在第一象限相切于点
(Ⅰ)求椭圆的方程;
(Ⅱ)求直线的方程以及点的坐标;
(Ⅲ)是否存在过点的直线与椭圆相交于不同的两点,满足?若存在,求直线的方程;若不存在,请说明理由.

(本小题满分13分)
已知函数
(Ⅰ)求函数的导函数
(Ⅱ)当时,若函数上的增函数,求的最小值;
(Ⅲ)当时,函数上存在单调递增区间,求的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号