某高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座。(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座的概率如下表:
根据上表:
(Ⅰ)求数学辅导讲座在周一、周三、周五都不满座的概率;
(Ⅱ)设周三各辅导讲座满座的科目数为,求随机变量
的分布列和数学期望.
设向量
(1)若
与
垂直,求
的值;
(2)求
的最大值;
(3)若
,求证:
.
已知以原点
为中心的双曲线的一条准线方程为
,离心率
.
(Ⅰ)求该双曲线的方程;
(Ⅱ)如图,点
的坐标为
,
是圆
上的点,点
在双曲线右支上,求
的最小值,并求此时
点的坐标.
已知
.
(Ⅰ)求
的值;
(Ⅱ)设
为数列
的前
项和,求证:
;
(Ⅲ)求证:
.
如图,在五面体
中,
,
,
,四边形
为平行四边形,
平面
,
.求:
(Ⅰ)直线
到平面
的距离;
(Ⅱ)二面角
的平面角的正切值.
袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球
(I)试问:一共有多少种不同的结果?请列出所有可能的结果;
(Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。