游客
题文

如图,正三棱柱ABC-A'B'C'中,D是BC的中点,AA'=AB=2.

(1)求证:A'C//平面AB'D;
(2)求二面角D一AB'一B的余弦值。

科目 数学   题型 解答题   难度 中等
知识点: 平行线法
登录免费查看答案和解析
相关试题

已知向量
(Ⅰ)当时,求向量的夹角
(Ⅱ)当时,求函数的最大值.

已知函数若方程有且只有两个相异实根0,2,且
(Ⅰ)求函数的解析式;
(Ⅱ)已知各项均不为1的数列满足求通项
(Ⅲ)如果数列满足求证:当时恒有成立.

在平面直角坐标系中,O为坐标原点,已知点M(1,-3),N(5,1),若点C满足
,点C的轨迹与抛物线交于A、B两点.
(Ⅰ)求证:
(Ⅱ)在轴正半轴上是否存在一定点P(m,0),使得过点P的任意一条抛物线的弦的长度是原点到该弦中点距离的2倍,若存在,求出m的值;若不存在,请说明理由.

已知是实数,函数满足函数在定义域上是偶函数,函数在区间上是减函数,且在区间(-2,0)上是增函数.
(Ⅰ)求的值;
(Ⅱ)如果在区间上存在函数满足,当x为何值时,得最小值.

如图,四棱锥PABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD⊥底面ABCDE为侧棱PD的中点.
(Ⅰ)试判断直线PB与平面EAC的关系;
(Ⅱ)求证:AE⊥平面PCD
(Ⅲ)若ADAB,试求二面角APCD的正切值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号