游客
题文

某工厂有25周岁以上(含2S周岁)工人300名,25周岁以下工人200名为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60), [60,70), [70,80), [80,90), [90,100), 分别加以统计,得到如图所示的频率分布直方图。

(1)求样本中“25周岁以上(含25周岁)组”抽取的人数、日生产量平均数;
(2)若“25周岁以上组”中日平均生产90件及90件以上的称为“生产能手”;“25周岁以下组”中日平均生产不足60件的称为“菜鸟”。从样本中的“生产能手”和”菜鸟”中任意抽取2人,求这2人日平均生产件数之和X的分布列及期望。(“生产能手”日平均生产件数视为95件,“菜鸟”日平均生产件数视为55件)。

科目 数学   题型 解答题   难度 中等
知识点: 误差估计
登录免费查看答案和解析
相关试题

在平面直角坐标系中,圆C的参数方程为,(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为,A,B两点的极坐标分别为
(1)求圆C的普通方程和直线的直角坐标方程;
(2)点P是圆C上任一点,求面积的最小值.

如图,的外接圆的切线AE与BC的延长线相交于点E,的平分线与BC相交于点D,求证:

(1)
(2)

如图,过椭圆内一点的动直线与椭圆相交于M,N两点,当平行于x轴和垂直于x轴时,被椭圆所截得的线段长均为

(1)求椭圆的方程;
(2)在平面直角坐标系中,是否存在与点A不同的定点B,使得对任意过点的动直线都满足?若存在,求出定点B的坐标,若不存在,请说明理由.

设函数,若是函数的极值点.
(1)求实数a的值;
(2)若恒成立,求整数n的最大值.

如图,在四棱锥中,底面ABCD是菱形,,侧面底面ABCD,并且,F为SD的中点.

(1)证明:平面FAC;
(2)求三棱锥的体积.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号