为了解“校本课程”开展情况,某校科研室随机选取了若干学生进行问卷调查(要求每位学生只能填写一种自己喜欢的课程),并将调查的结果绘制成如下两幅不完整的统计图:
请根据以上信息回答下列问题:
(1)参加问卷调查的学生共有 人;
(2)在扇形统计图中,表示“C”的扇形的圆心角为 度;
(3)统计发现,填写“喜欢手工制作”的学生中,男生人数∶女生人数=1∶6.如果从所有参加问卷调查的学生中随机选取一名学生,那么这名学生是填写“喜欢手工制作”的女生的概率为 .
某校男子足球队的年龄分布如下面的条形图所示.
(1)求这些队员的平均年龄;
(2)下周的一场校际足球友谊赛中,该校男子足球队将会有11名队员作为首发队员出场,不考虑其他因素,请你求出其中某位队员首发出场的概率.
我们把两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD,请你写出与筝形ABCD的角或者对角线有关的一个结论,并证明你的结论.
先化简,再求值:,其中a
5.
如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,∠BCD=60°,点E是AB上一点,AE=3EB,⊙P过D,O,C三点,抛物线过点D,B,C三点.
(1)求抛物线的解析式;
(2)求证:ED是⊙P的切线;
(3)若将△ADE绕点D逆时针旋转90°,E点的对应点E′会落在抛物线上吗?请说明理由;
(4)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
已知关于x的方程.
(1)求证:无论k取任何实数时,方程总有实数根;
(2)当抛物线图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,
),Q(1,
)是此抛物线上的两点,且
,请结合函数图象确定实数a的取值范围;
(3)已知抛物线恒过定点,求出定点坐标.