为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:
|
喜爱打篮球 |
不喜爱打篮球 |
合计 |
男生 |
|
5 |
|
女生 |
10 |
|
|
合计 |
|
|
50 |
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为.
(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;
(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为ξ,求ξ的分布列与期望.
下面的临界值表供参考:
P(K2≥k) |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
k |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:K2=,其中n=a+b+c+d)
已知一条抛物线和一个椭圆都经过点M(1,2),它们在x轴上具有相同的焦点F1,且两者的对称轴都是坐标轴,抛物线的顶点在坐标原点。
(1)抛物线的方程和椭圆方程;
(2)设椭圆的另一个焦点是F2,经过F2的直线与抛物线交于P,Q两点,且满足
,求m的取值范围。
如图,四棱锥P—ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.
(1)求证:BE//平面PAD;
(2)若BE⊥平面PCD。
(i)求异面直线PD与BC所成角的余弦值;
(ii)求二面角E—BD—C的余弦值.
数列.
(1)
(2)在(1)的结论下,设
已知向量,设函数
。
(1)求函数 的最小正周期及
时的最大值;
(2)把函数的图象向左平移
个单位,所得到的图象对应的函数为奇函数,求
的最小值。
(本小题满分12分)已知函数,其中常数
.
(1)当时,求函数
的极大值;
(2)当时,曲线
上总存在相异两点
,
,使得曲线
在点
处的切线互相平行,求
的取值范围.