如图,现要在边长为的正方形
内建一个交通“环岛”.正方形的四个顶点为圆心在四个角分别建半径为
(
不小于
)的扇形花坛,以正方形的中心为圆心建一个半径为
的圆形草地.为了保证道路畅通,岛口宽不小于
,绕岛行驶的路宽均不小于
.
(1)求的取值范围;(运算中
取
)
(2)若中间草地的造价为元
,四个花坛的造价为
元
,其余区域的造价为
元
,当
取何值时,可使“环岛”的整体造价最低?
给定椭圆:
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”.若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
.
(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆
的“准圆”上的动点,过点
作椭圆的切线
交“准圆”于点
.
(ⅰ)当点为“准圆”与
轴正半轴的交点时,求直线
的方程并证明
;
(ⅱ)求证:线段的长为定值.
已知函数.
(1)若在
处取得极值,求实数
的值;
(2)求函数的单调区间;
(3)若在
上没有零点,求实数
的取值范围.
如图,已知四棱锥,
,
,
平面
,
∥
,
为
的中点.
(1)求证:∥平面
;
(2)求证:平面平面
;
(3)求四棱锥的体积.
某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如下图.
(1)求分数在的频率及全班人数;
(2)求分数在之间的频数,并计算频率分布直方图中
间矩形的高;
(3)若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在
之间的概率.
在△中,角
的对边分别为
,且
,
.
(1)求角的大小;
(2)若,
,求
边的长和△
的面积.