如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC
(2)求点A到平面PBC的距离.
如图,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.
(1)求抛物线E的方程;
(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q,证明以PQ为直径的圆恒过y轴上某定点.
已知顶点在坐标原点,焦点在x轴正半轴的抛物线上有一点A(,m),A点到抛物线焦点的距离为1.
(1)求该抛物线的方程;
(2)设M(x0,y0)为抛物线上的一个定点,过M作抛物线的两条互相垂直的弦MP,MQ,求证:PQ恒过定点(x0+2,-y0).
已知抛物线C:y2=2px(p>0)过点A(1,-2).
(1)求抛物线C的方程,并求其准线方程;
(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由.
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(,0).
(1)求双曲线C的方程;
(2)若直线l:y=kx+与双曲线C恒有两个不同的交点A和B,且
·
>2(其中O为原点),求k的取值范围.
设圆C与两圆(x+)2+y2=4,(x-
)2+y2=4中的一个内切,另一个外切.
(1)求C的圆心轨迹L的方程;
(2)已知点M(,
),F(
,0),且P为L上动点,求||MP|-|FP||的最大值及此时点P的坐标.