如图,在△ABC中,∠C=90°,AD所在直线是∠BAC的对称轴,DE⊥AB于E,点F在AC上,BD=DF.
求证:(1)DC=DE;
(2)CF="EB."
(1)如图①,点 在 上,点 在 上, , .求证: .
(2)如图②, 为 上一点,按以下步骤作图:
①连接 ;
②以点 为圆心, 长为半径作弧,交 于点 ;
③在射线 上截取 ;
④连接 .
若 ,求 的半径.
计算:
(1) ;
(2) .
如图①,要在一条笔直的路边 上建一个燃气站,向 同侧的 、 两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.
(1)如图②,作出点 关于 的对称点 ,线段 与直线 的交点 的位置即为所求,即在点 处建燃气站,所得路线 是最短的.
为了证明点 的位置即为所求,不妨在直线1上另外任取一点 ,连接 、 ,证明 .请完成这个证明.
(2)如果在 、 两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).
①生态保护区是正方形区域,位置如图③所示;
②生态保护区是圆形区域,位置如图④所示.
如图,在 和△ 中, 、 分别是 、 上一点, .
(1)当 时,求证 △ .
证明的途径可以用下面的框图表示,请填写其中的空格.
(2)当 时,判断 与△ 是否相似,并说明理由.
小明和小丽先后从 地出发沿同一直道去 地.设小丽出发第 时,小丽、小明离 地的距离分别为 、 . 与 之间的函数表达式是 , 与 之间的函数表达式是 .
(1)小丽出发时,小明离 地的距离为 .
(2)小丽出发至小明到达 地这段时间内,两人何时相距最近?最近距离是多少?