已知中心在原点,焦点在坐标轴上的双曲线经过
、
两点
(1)求双曲线的方程;
(2)设直线交双曲线
于
、
两点,且线段
被圆
:
三等分,求实数
、
的值
(本小题满分10分)选修4-4:坐标系与参数方程
在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度.已知曲线
,过点
的直线
的参数方程为
(t为参数)。直线
与曲线
分别交于
.若
成等比数列,求实数
的值。
(本小题满分10分)选修4-1:几何证明选讲
如图,已知是⊙
的直径,
是⊙
的弦,
的平分线
交⊙
于
,过点
作
交
的延长线于点
,
交
于点
.若
,求
的值。
设抛物线C1:y2=4x的准线与x轴交于点F1,焦点为F2;以F1,F2为焦点,离心率为的椭圆记作C2
(1)求椭圆的标准方程;
(2)直线L经过椭圆C2的右焦点F2,与抛物线C1交于A1,A2两点,与椭圆C2交于B1,B2两点。当以B1B2为直径的圆经过F1时,求|A1A2|长。
(3)若M是椭圆上的动点,以M为圆心,MF2为半径作圆,是否存在定圆
,使得
与
恒相切?若存在,求出
的方程,若不存在,请说明理由。
已知函数(a是实数),
+1。
(1)当时,求函数
在定义遇上的最值.
(2)若函数f(x)在[1,+)上是单调函数,求a的取值范围;
(3)是否存在正实数a满足:对于任意,总存在
,使得f(x1)=g(x2)成立,若存在求出a的范围,若不存在,说明理由。
如图,在四棱台ABCD-A1B1C1D1中,DD1平面ABCD,底面ABCD是平行四边形,AB=AD=2A1B1,
(1)证明:BB1AC;
(2)若AB=2,且二面角A1-AB-C大小为60,连接AC,BD,设交点为O,连接B1O。求三棱锥B1-ABO外接球的体积。(球体体积公式:
,R是球半径)