已知点、
,动点
满足:
,且
(1)求动点的轨迹
的方程;
(2)已知圆W: 的切线
与轨迹
相交于P,Q两点,求证:以PQ为直径的圆经过坐标原点
.
(本小题满分14分)已知为实数,对于实数
和
,定义运算“
”:
,
设.
(Ⅰ)若在
上为增函数,求实数
的取值范围;
(Ⅱ)若方程有三个不同的解,记此三个解的积为
,求
的取值范围.
(本小题满分15分)如图,设抛物线的焦点为
,
为抛物线的顶点.过
作抛物线
的弦,直线
,
分别交直线
于点
,
.
(Ⅰ)当时,求
的值;
(Ⅱ)设直线的方程为
,记
的面积为
,求
关于
的解析式.
(本小题满分15分)如图,已知平面
,
,
,
,
为等边三角形.
(Ⅰ)求证:平面平面
;
(Ⅱ)求与平面
所成角的正弦值.
(本小题满分15分)已知数列满足
,
.令
.
(Ⅰ)求证:数列为等差数列;
(Ⅱ)求证:.
(本小题满分15分)已知在中,
,
,
分别是角
,
,
的对边,且满足
.
(Ⅰ)求角的大小;
(Ⅱ)若点为边
的中点,求
面积的最大值.