如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1,F分别是棱AD,AA1,AB的中点.
(1)证明:直线EE1∥平面FCC1;
(2)求二面角B-FC1-C的余弦值.
(本小题满分13分)
如图,在三棱锥中,侧面
与侧面
均为等边三角形,
,
为
中点.
(Ⅰ)证明:平面
;
(Ⅱ)求二面角的余弦值.
设函数,
,(Ⅰ)如果函数
的图像是由函数
的图像上各点的横坐标伸长为原来的2倍,再把所得图像向左平移
得到,求函数
解析式;
(Ⅱ)如果,求
在区间
上的值域.
已知函数.
(1)若函数在区间(其中
)上存在极值,求实数a的取值范围;
(2)如果当时,不等式
恒成立,求实数k的取值范围.
已知椭圆方程为,它的一个顶点为
,离心率
.
(1)求椭圆的方程;
(2)设直线与椭圆交于A,B两点,坐标原点O到直线l的距离为
,求△AOB面积的最大值.
在数列中,已知a1=2,an+1=4an-3n+1,n∈
.
(1)设,求数列
的通项公式;
(2)设数列的前n项和为Sn,证明:对任意的n∈
,不等式Sn+1≤4Sn恒成立.