如图,在四棱锥P-ABCD中,平面PAC⊥平面ABCD,且PA⊥AC,PA=AD=2.四边形ABCD满足BC∥AD,AB⊥AD,AB=BC=1.点E,F分别为侧棱PB,PC上的点,且=λ.(1)求证:EF∥平面PAD.(2)当λ=时,求异面直线BF与CD所成角的余弦值;(3)是否存在实数λ,使得平面AFD⊥平面PCD?若存在,试求出λ的值;若不存在,请说明理由.
设函数,其中,解不等式.
解关于x的不等式>1(a≠1).
(本小题满分13分) 已知函数 (1)判断的单调性; (2)记若函数有两个零点,求证
(本小题满分13分) 已知数列的相邻两项是关于的方程的两根,且 (1)求证:数列是等比数列; (2)求数列的前项和; (3)设函数若对任意的都成立,求的取值范围。
(本小题满分13分) 某商场根据调查,估计家电商品从年初(1月)开始的个月内累计的需求量(百件)为 (1)求第个月的需求量的表达式. (2)若第个月的销售量满足(单位:百件),每件利润元,求该商场销售该商品,求第几个月的月利润达到最大值?最大是多少?
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号