游客
题文

如图,在四棱锥P-ABCD中,平面PAC⊥平面ABCD,且PAACPAAD=2.四边形ABCD满足BCADABADABBC=1.点EF分别为侧棱PBPC上的点,且λ.

(1)求证:EF∥平面PAD.
(2)当λ时,求异面直线BFCD所成角的余弦值;
(3)是否存在实数λ,使得平面AFD⊥平面PCD?若存在,试求出λ的值;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

已知函数(e为自然对数的底数).
(1)求函数的单调增区间;
(2)设关于x的不等式的解集为M,且集合,求实数t的取值范围.

已知内任意一点,连结并延长交对边于,则.这是平面几何的一个命题,其证明常常采用“面积法”: .
运用类比,猜想对于空间中的四面体,存在什么类似的结论,并用“体积法”证明.

在人寿保险业中,要重视某一年龄的投保人的死亡率,经过随机抽样统计,得到某市一个投保人能活到75岁的概率为0.60,试问:
(1)若有3个投保人, 求能活到75岁的投保人数的分布列;
(2)3个投保人中至少有1人能活到75岁的概率.(结果精确到0.01)

在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球5个,白球3个,蓝球2个。现从盒子中每次任意取出一个球,若取出的是蓝球则结束,若取出的不是蓝球则将其放回箱中,并继续从箱中任意取出一个球,但取球次数最多不超过3次。求:
(1)取两次就结束的概率;
(2)正好取到2个白球的概率.

现有5名男生和3名女生.
(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?
(2)若从中选5人,且要求女生只有2名, 站成一排,共有多少种不同的排法?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号